

Effects of Climate Change on Road Network Resilience

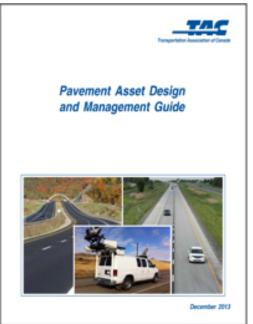
Professor Susan Tighe, Ph.D, P.Eng Norman W. McLeod Chair in Sustainable Pavement Engineering Director Centre for Pavement and Transportation Technology

Seminar Challenges for resilient road networks

Santiago Chile

October 18, 2016

CENTRE FOR PAVEMENT AND FRANSPORTATION TECHNOLOGY


UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

- **Presentation Overview**
- Introduction
- Climate Change
- Natural Disasters
- Road build-in resilience strategies
- Closing Remarks

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Pavement Asset Design and Management Guide

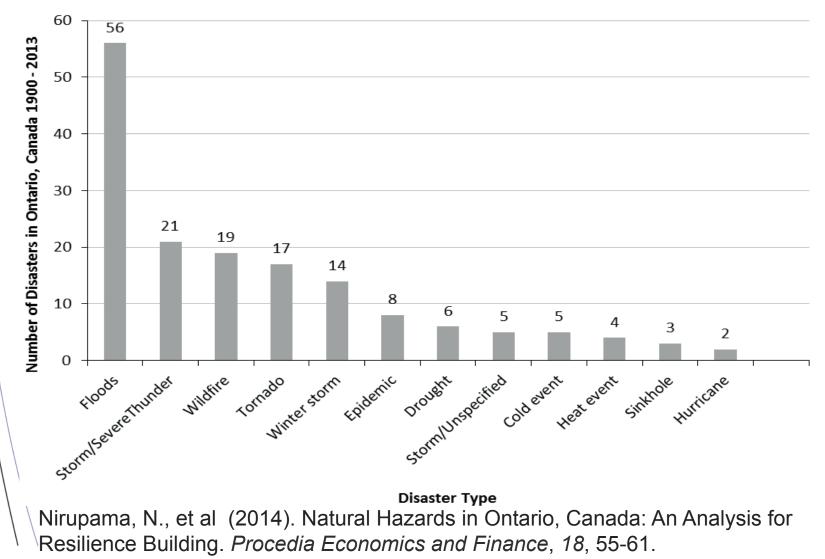
- Leading the Development of the Transportation Association of Canada (TAC) design guide
- Resulted in many positive changes to Canadian standards and specifications

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Pavement Asset Design and Management Guide

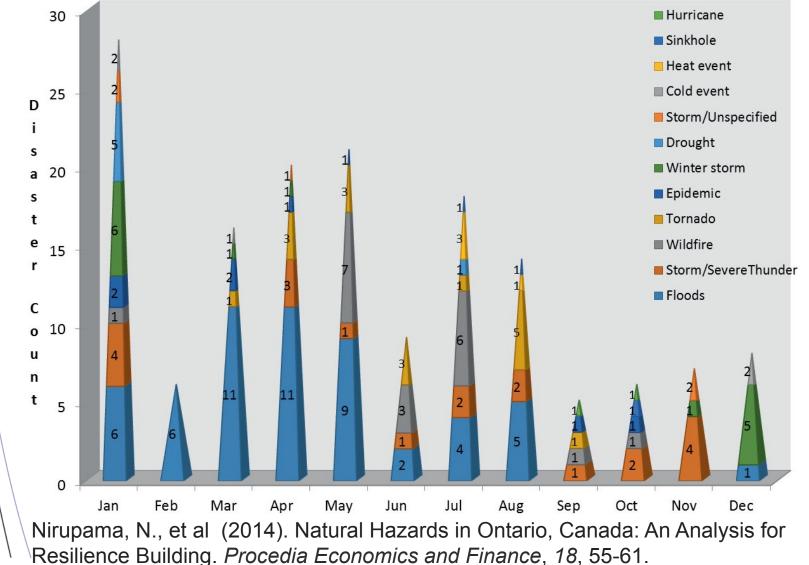
- Includes a new chapter on Climate Change and Sustainability
- Focuses on provincial, municipal and city needs

[Reid and Hein 2016]


UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Climate Change

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca


Disaster Types in Ontario 1900 – 2013

UNIVERSITY OF WATERLOO

200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

When does flooding occur?

Assessment of Damage

Load type	Pavement damage reasons				
Flood depth	Absorption of water				
Flood duration	Absorption of water				
Flood velocity	Force of water				
Flood debris	Pavement surface texture reduction				
Flood contaminants	Absorption or adhesion of contaminants carried by water				

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Climate Change Impacts

THE ROAD WELL-TRAVELED:

Implications of Climate Change for Pavement Infrastructure in Southern Canada

Brian N. Mills¹, Susan L. Tighe², Jean Andrey³, James T. Smith², Suzanne Parm³ and Ken Huen²

¹ Environment Canada, Adaptation & Impacts Research Division, Waterloo, Ontario ² University of Waterloo, Department of Civil & Environmental Engineering, Waterloo, Ontario ³ University of Waterloo, Department of Geography, Waterloo, Ontario

FINAL TECHNICAL REPORT

March 2007

vironment Environnement nada Canada

Canada

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Analysis of Performance Related Data

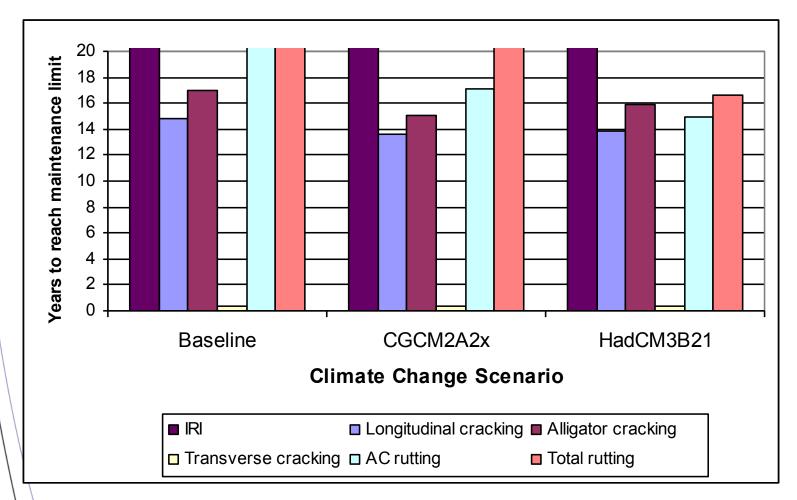
PROVINCE	British Columbia	Alberta	Manitoba	Ontario	Quebec	Newfoundla	Ind
LTPP Site Identification	82-1005	81-1804	83-6450	87-1806	89-1021	85-1808	
Climatic Region	Wet- freeze	Dry- freeze	Wet- freeze	Wet- freeze	Wet- freeze	Wet-freez	e
Climate station reference	1108447 Vancouver International Airport	3012205 Edmonton International Alrport	5023222 Winnipeg International Airport	6158733 L.B. Pearson International Airport	7025250 P.E. Trudeau International Alrport	1.	Influence of climate
Latitude (degrees)	49.2	53.5	50.0	43.7	45.5		and climate change
Longitude (degrees)	-123.1	-113.5	-97.2	-79.6	-73.6		
Elevation (m)	4.3	723.3	238.7	173.4	35.7		alone
Traffic							
2-way AADTT**	1240	1420	498	2744	1912		
Percentage of truck traffic in design lane	100	100	100	100	100	2.	Influence of structure
Pavement Structure							type and baseline
Layer 1: Asphalt (cm)	9.7	8.4	5.1	4.1	5.3		
Layer 2: Asphalt (cm)	-	-	5.6	10.2	-		traffic volume
Layer 3: Base (cm)	23.9	32.8	11.4	18.0	7.9		
Layer 4: Subbase (cm)	31.0	24.6	10.7	79.2	38.1		
Pavement Material						3.	Combined influence of
Base	Crushed gravel	Crushed gravel	Crushed gravel	Crushed gravel	Crushed gravel		traffic growth and
Subbase	River-run gravel	River- run gravel	River- run gravel	A-4	Crushed gravel		climate change
Subgrade**	SM	SM	SM	ML	SP	GW	

* Average Annual Daily Truck Traffic

** SM-silty sand or silty gravelly sand, GW-gravel or sandy gravel, well-graded; ML-silts, sandy silts, or diatomaceous soils; SP-sand or gravelly sand, poorly graded

Analysis of Performance Related Data

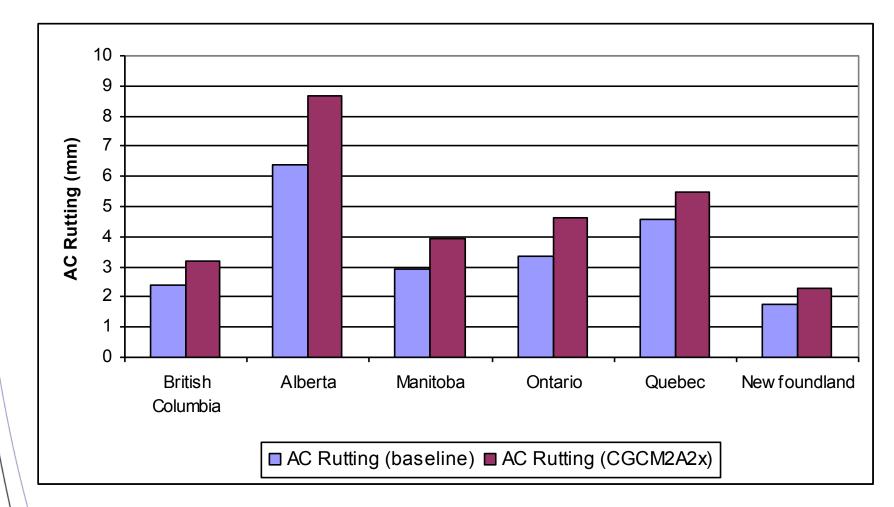
- Extreme minimum daily temperature (thermal cracking indicator)
- Seven-day average maximum daily temperature (rutting indicator)
- Freezing and thawing indices (indicator of frost and thaw depths)


UNIVERSITY OF WATERLOO

200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

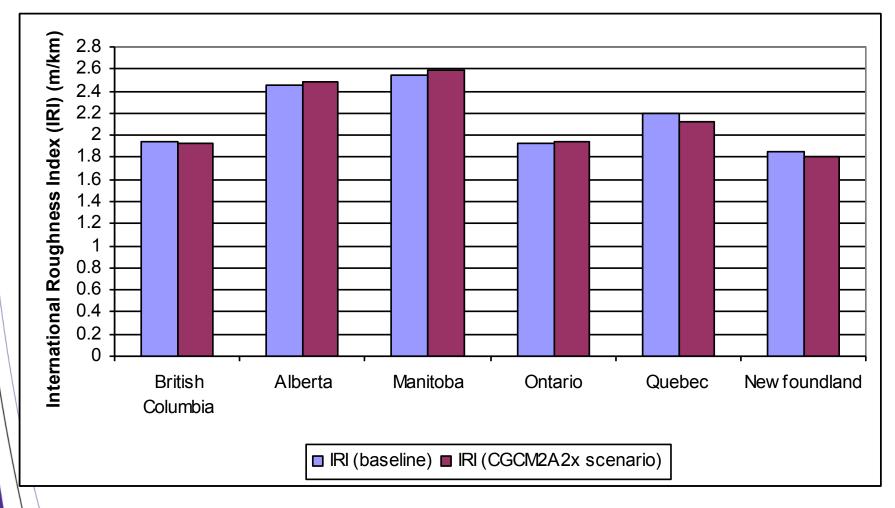
Planning and Programming	Design	Construction	Maintenance, Preservation and Rehabilitation	In-Service Evaluation	End of Service Life
 Traffic and Environmental data information Assess network deficiencies Budgets Establish priorities Schedule projects Priorities 	 Information on materials, traffic, costs, environment, etc. Design alternatives Analysis Optimization Sustainability User costs 	 Environment during construction Specifications Contracts Schedules Construction operations Quality control/quality assurance Records 	•Standards •Treatments •Schedules •Operations •Budget control •Records •Impact on performance •User costs	 Periodic monitoring of structural adequacy, roughness, surface distress, and surface friction Assess performance Prioritize 	 Recycling and reuse of materials for reconstruction Salvage Value Records Restoration Zero Waste Management
'Working" Mar	agement	Datab		Loop)
Research	1	Informa	tion	Loop	, (ТАС, 20

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca


Alberta (Edmonton) site (50% reliability)

(Mills, 2007)

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca


Pavement Predictions

(Mills, 2007)

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Pavement Predictions

(Mills, 2007)

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Climate Change Impacts on Pavement

- Changes occurring in minimum daily temperature
- Changes occurring in maximum daily temperature
- Changes occurring in freezing and thawing indices
- Changes occurring in precipitation, duration and intensity
- All of these changes are impacting infrastructure
- Reconsider current design methods, maintenance and rehabilitation practices
- Manage implications

What is a Natural Disaster?

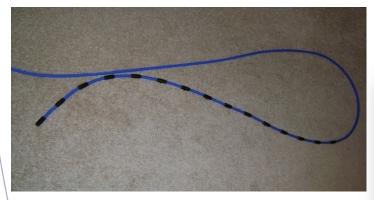
Role of Engineers and Scientists

- •Many of these could possibly be avoided by better design, construction, safety systems, early warning and planning.
- •Scientists and engineers try to prevent damage by warning people the natural disaster is coming.
- •Try to monitor the event and try to prevent damage.
- •Develop plans for emergencies

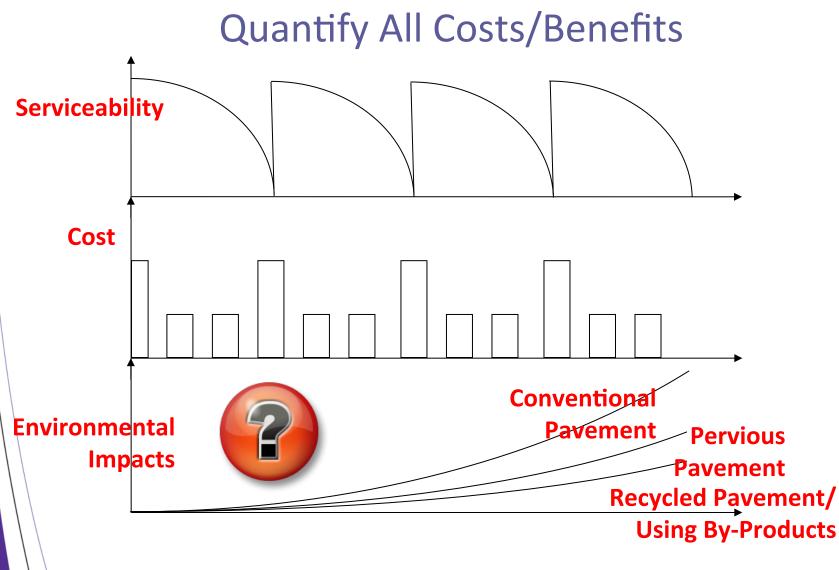
Key Sustainability Issues

- Virgin Material Usage
- Alternative Material Usage
- Program for In-Service Monitoring and Management
- Air Quality/Emissions
- Water Quality
- Noise
- Energy Usage

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca


Research Methodology

- Technical
- Economic
- Sustainable
- Costs/Benefits


UNIVERSITY OF WATERLOO

200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Planning and Programming	Design	Construction	Maintenance, Preservation and Rehabilitation	In-Service Evaluation	End of Service Life
 Traffic and Environmental data information Assess network deficiencies Budgets Establish priorities Schedule projects Priorities 	 Information on materials, traffic, costs, environment, etc. Design alternatives Analysis Optimization Sustainability User costs 	 Environment during construction Specifications Contracts Schedules Construction operations Quality control/quality assurance Records 	•Standards •Treatments •Schedules •Operations •Budget control •Records •Impact on performance •User costs	 Periodic monitoring of structural adequacy, roughness, surface distress, and surface friction Assess performance Prioritize 	 Recycling and reuse of materials for reconstruction Salvage Value Records Restoration Zero Waste Management
'Working" Mar	agement	Datab		Loop)
Research	1	Informa	tion	Loop	, (ТАС, 20

UNIVERSITY OF WATERLOO

200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

(Tighe, 2010)

Long Life Design

- •Resilience is the ability to deal with changes in general
- •Resilience in pavement engineering design to ensure it withstands hazard with minimum damage of pavement
- •Build-in pavement resilience from material revolution view

 Pavement resilience from post disaster using pavement management to better manage future road

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Closing Remarks

- •Understand climate Change must be examined for Long Life Infrastructure
- •Adoption of new materials and designs
- •Evaluate potential threats related to climate change and plan for them
- •Proactive design and management

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Acknowledgements

- Undergraduate and Graduate Students
- Ministry of Transportation Ontario (MTO)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Ontario Hot Mix Producers Association (OHMPA)
- Cement Association of Canada
- Partners in Norman W. McLeod Chair

Cement Association of Canada Association Canadienne du Ciment

TRANSPORTATION TECHNOLOG

UNIVERSITY OF WATERLOO 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 519-888-4567 | uwaterloo.ca

Questions/Comments

Professor Susan Tighe, Ph.D, P.Eng Norman W. McLeod Chair in Sustainable Pavement Engineering Director Centre for Pavement and Transportation Technology

sltighe@uwaterloo.ca